Mercedes Pascual

Infectious disease dynamics, Theoretical ecology, Ecology and evolution of infectious diseases, Mathematical and computational biology, Climate and health, Vector-borne and water-borne infections
  • Universidad de Ciencias Exactas y Naturales, Buenos Aires, Argentina, Licenciatura Biology 12/1985
  • New Mexico State University, Las Cruces, NM, M.Sc. Mathematics 06/1989
  • WHOI and MIT, Woods Hole, MA, PhD Biological Oceanography 07/1995
  • Princeton University, Princeton, NJ, Postoctoral Theoretical Ecology 08/1997
Biosciences Graduate Program Association
Awards & Honors
  • 1995 - 1997 US Department of Energy Alexander Hollaender Distinguished Postdoctoral Fellowship Princeton University
  • 1999 - 2008 James S. McDonnell Centennial Fellowship in Global and Complex Systems University of Michigan
  • 2003 - Discover Magazine: Top 50 Women in Science
  • 2003 - Fellow of the American Association for the Advancement of Science
  • 2004 - Faculty Recognition Award University of Michigan
  • 2008 - Collegiate Professor University of Michigan
  • 2008 - Howard Hugues Medical Investigator University of Michigan
  • 2014 - Robert H. MacArthur Award of the Ecological Society of America
  • 2015 - Fellow of the Ecological Society of America
  • 2019 - American Academy of Arts and Sciences
  1. Neutral vs. non-neutral genetic footprints of Plasmodium falciparum multiclonal infections. PLoS Comput Biol. 2023 01; 19(1):e1010816. View in: PubMed

  2. Indoor residual spraying with a non-pyrethroid insecticide reduces the reservoir of Plasmodium falciparum in a high-transmission area in northern Ghana. PLOS Glob Public Health. 2022; 2(5). View in: PubMed

  3. Frequency-Dependent Competition Between Strains Imparts Persistence to Perturbations in a Model of Plasmodium falciparum Malaria Transmission. Front Ecol Evol. 2021; 9. View in: PubMed

  4. Author Correction: Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nat Commun. 2022 Mar 11; 13(1):1404. View in: PubMed

  5. Fine-scale heterogeneity in population density predicts wave dynamics in dengue epidemics. Nat Commun. 2022 02 22; 13(1):996. View in: PubMed

  6. Age-specific patterns of DBLa var diversity can explain why residents of high malaria transmission areas remain susceptible to Plasmodium falciparum blood stage infection throughout life. Int J Parasitol. 2022 Oct; 52(11):721-731. View in: PubMed

  7. The impact of indoor residual spraying on Plasmodium falciparum microsatellite variation in an area of high seasonal malaria transmission in Ghana, West Africa. Mol Ecol. 2021 08; 30(16):3974-3992. View in: PubMed

  8. What happens when forests fall? Elife. 2021 04 06; 10. View in: PubMed

  9. Malaria trends in Ethiopian highlands track the 2000 'slowdown' in global warming. Nat Commun. 2021 03 10; 12(1):1555. View in: PubMed

  10. An antigenic diversification threshold for falciparum malaria transmission at high endemicity. PLoS Comput Biol. 2021 02; 17(2):e1008729. View in: PubMed

  11. Quantifying asymptomatic infection and transmission of COVID-19 in New York City using observed cases, serology, and testing capacity. Proc Natl Acad Sci U S A. 2021 03 02; 118(9). View in: PubMed

  12. The network structure and eco-evolutionary dynamics of CRISPR-induced immune diversification. Nat Ecol Evol. 2020 12; 4(12):1650-1660. View in: PubMed

  13. Predicting re-emergence times of dengue epidemics at low reproductive numbers: DENV1 in Rio de Janeiro, 1986-1990. J R Soc Interface. 2020 06; 17(167):20200273. View in: PubMed

  14. Tube Well Use as Protection Against Rotavirus Infection During the Monsoons in an Urban Setting. J Infect Dis. 2020 01 02; 221(2):238-242. View in: PubMed

  15. Development, environmental degradation, and disease spread in the Brazilian Amazon. PLoS Biol. 2019 11; 17(11):e3000526. View in: PubMed

  16. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in Plasmodium falciparum. PLoS Biol. 2019 06; 17(6):e3000336. View in: PubMed

  17. Mosquito-borne transmission in urban landscapes: the missing link between vector abundance and human density. Proc Biol Sci. 2018 08 15; 285(1884). View in: PubMed

  18. Identifying functional groups among the diverse, recombining antigenic var genes of the malaria parasite Plasmodium falciparum from a local community in Ghana. PLoS Comput Biol. 2018 06; 14(6):e1006174. View in: PubMed

  19. Networks of genetic similarity reveal non-neutral processes shape strain structure in Plasmodium falciparum. Nat Commun. 2018 05 08; 9(1):1817. View in: PubMed

  20. Signatures of competition and strain structure within the major blood-stage antigen of Plasmodium falciparum in a local community in Ghana. Ecol Evol. 2018 Apr; 8(7):3574-3588. View in: PubMed

  21. Incidence Prediction for the 2017-2018 Influenza Season in the United States with an Evolution-informed Model. PLoS Curr. 2018 Jan 17; 10. View in: PubMed

  22. Understanding the role of parasites in food webs using the group model. J Anim Ecol. 2018 05; 87(3):790-800. View in: PubMed

  23. Climate-driven endemic cholera is modulated by human mobility in a megacity. Adv Water Resour. 2017 Oct; 108:367-376. View in: PubMed

  24. Evolution-informed forecasting of seasonal influenza A (H3N2). Sci Transl Med. 2017 Oct 25; 9(413). View in: PubMed

  25. The rise and fall of malaria under land-use change in frontier regions. Nat Ecol Evol. 2017 Mar 20; 1(5):108. View in: PubMed

  26. The multilayer nature of ecological networks. Nat Ecol Evol. 2017 Mar 23; 1(4):101. View in: PubMed

  27. Seasonal Variation in the Epidemiology of Asymptomatic Plasmodium falciparum Infections across Two Catchment Areas in Bongo District, Ghana. Am J Trop Med Hyg. 2017 Jul; 97(1):199-212. View in: PubMed

  28. Evidence of strain structure in Plasmodium falciparum var gene repertoires in children from Gabon, West Africa. Proc Natl Acad Sci U S A. 2017 05 16; 114(20):E4103-E4111. View in: PubMed

  29. Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El Ni?o: Lessons learned. PLoS One. 2017; 12(3):e0172355. View in: PubMed

  30. Population Density, Climate Variables and Poverty Synergistically Structure Spatial Risk in Urban Malaria in India. PLoS Negl Trop Dis. 2016 12; 10(12):e0005155. View in: PubMed

  31. Climate forcing and infectious disease transmission in urban landscapes: integrating demographic and socioeconomic heterogeneity. Ann N Y Acad Sci. 2016 10; 1382(1):44-55. View in: PubMed

  32. Differential and enhanced response to climate forcing in diarrheal disease due to rotavirus across a megacity of the developing world. Proc Natl Acad Sci U S A. 2016 Apr 12; 113(15):4092-7. View in: PubMed

  33. Ecological Networks over the Edge: Hypergraph Trait-Mediated Indirect Interaction (TMII) Structure. Trends Ecol Evol. 2016 05; 31(5):344-354. View in: PubMed

  34. Temperature and population density determine reservoir regions of seasonal persistence in highland malaria. Proc Biol Sci. 2015 12 07; 282(1820):20151383. View in: PubMed

  35. Predictability of epidemic malaria under non-stationary conditions with process-based models combining epidemiological updates and climate variability. Malar J. 2015 Oct 26; 14:419. View in: PubMed

  36. Climate and Population Immunity in Malaria Dynamics: Harnessing Information from Endemicity Gradients. Trends Parasitol. 2015 Nov; 31(11):532-534. View in: PubMed

  37. Forecasting Bifurcations from Large Perturbation Recoveries in Feedback Ecosystems. PLoS One. 2015; 10(9):e0137779. View in: PubMed

  38. Synergistic and antagonistic interactions between bednets and vaccines in the control of malaria. Proc Natl Acad Sci U S A. 2015 Mar 10; 112(10):3014-9. View in: PubMed

  39. Simple models for complex systems: exploiting the relationship between local and global densities. Theor Ecol. 2011; 4:211-222. View in: PubMed

  40. The inverse niche model for food webs with parasites. Theor Ecol. 2010; 3:285-294. View in: PubMed

  41. Seasonality in the migration and establishment of H3N2 Influenza lineages with epidemic growth and decline. BMC Evol Biol. 2014 12 24; 14:272. View in: PubMed

  42. Cholera and shigellosis: different epidemiology but similar responses to climate variability. PLoS One. 2014; 9(9):e107223. View in: PubMed

  43. Epidemic cholera spreads like wildfire. Sci Rep. 2014 Jan 15; 4:3710. View in: PubMed

  44. Homology blocks of Plasmodium falciparum var genes and clinically distinct forms of severe malaria in a local population. BMC Microbiol. 2013 Nov 06; 13:244. View in: PubMed

  45. Long-lasting transition toward sustainable elimination of desert malaria under irrigation development. Proc Natl Acad Sci U S A. 2013 Sep 10; 110(37):15157-62. View in: PubMed

  46. Influenza evolution navigates stability valleys. Elife. 2013 May 14; 2:e00842. View in: PubMed

  47. Malaria control under unstable dynamics: reactive vs. climate-based strategies. Acta Trop. 2014 Jan; 129:42-51. View in: PubMed

  48. The potential elimination of Plasmodium vivax malaria by relapse treatment: insights from a transmission model and surveillance data from NW India. PLoS Negl Trop Dis. 2013; 7(1):e1979. View in: PubMed

  49. The roles of competition and mutation in shaping antigenic and genetic diversity in influenza. PLoS Pathog. 2013 Jan; 9(1):e1003104. View in: PubMed

  50. Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum. Elife. 2012 Dec 18; 1:e00093. View in: PubMed

  51. Canalization of the evolutionary trajectory of the human influenza virus. BMC Biol. 2012 Apr 30; 10:38. View in: PubMed

  52. Highly localized sensitivity to climate forcing drives endemic cholera in a megacity. Proc Natl Acad Sci U S A. 2012 Feb 07; 109(6):2033-6. View in: PubMed

  53. Spatial guilds in the Serengeti food web revealed by a Bayesian group model. PLoS Comput Biol. 2011 Dec; 7(12):e1002321. View in: PubMed

  54. Global malaria maps and climate change: a focus on East African highlands. Trends Parasitol. 2011 Oct; 27(10):421-2. View in: PubMed

  55. Strength and tempo of selection revealed in viral gene genealogies. BMC Evol Biol. 2011 Jul 25; 11:220. View in: PubMed

  56. Climate forcing and desert malaria: the effect of irrigation. Malar J. 2011 Jul 14; 10:190. View in: PubMed

  57. Understanding the dynamics of rapidly evolving pathogens through modeling the tempo of antigenic change: influenza as a case study. Epidemics. 2009 Jun; 1(2):129-37. View in: PubMed

  58. Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecol Lett. 2011 Jan; 14(1):29-35. View in: PubMed

  59. Epidemic malaria and warmer temperatures in recent decades in an East African highland. Proc Biol Sci. 2011 Jun 07; 278(1712):1661-9. View in: PubMed

  60. Transmission intensity and drug resistance in malaria population dynamics: implications for climate change. PLoS One. 2010 Oct 26; 5(10):e13588. View in: PubMed

  61. Forcing versus feedback: epidemic malaria and monsoon rains in northwest India. PLoS Comput Biol. 2010 Sep 02; 6(9):e1000898. View in: PubMed

  62. Global migration dynamics underlie evolution and persistence of human influenza A (H3N2). PLoS Pathog. 2010 May 27; 6(5):e1000918. View in: PubMed

  63. Ecological factors driving the long-term evolution of influenza's host range. Proc Biol Sci. 2010 Sep 22; 277(1695):2803-10. View in: PubMed

  64. Spatial clustering in the spatio-temporal dynamics of endemic cholera. BMC Infect Dis. 2010 Mar 06; 10:51. View in: PubMed

  65. Random, top-down, or bottom-up coexistence of parasites: malaria population dynamics in multi-parasitic settings. Ecology. 2009 Sep; 90(9):2414-25. View in: PubMed

  66. Googling food webs: can an eigenvector measure species' importance for coextinctions? PLoS Comput Biol. 2009 Sep; 5(9):e1000494. View in: PubMed

  67. Underestimating malaria risk under variable temperatures. Proc Natl Acad Sci U S A. 2009 Aug 18; 106(33):13645-6. View in: PubMed

  68. Food web models: a plea for groups. Ecol Lett. 2009 Jul; 12(7):652-62. View in: PubMed

  69. The assembly, collapse and restoration of food webs. Philos Trans R Soc Lond B Biol Sci. 2009 Jun 27; 364(1524):1803-6. View in: PubMed

  70. Functional links and robustness in food webs. Philos Trans R Soc Lond B Biol Sci. 2009 Jun 27; 364(1524):1701-9. View in: PubMed

  71. Do rising temperatures matter? Ecology. 2009 Apr; 90(4):906-12. View in: PubMed

  72. Inapparent infections and cholera dynamics. Nature. 2008 Aug 14; 454(7206):877-80. View in: PubMed

  73. Malaria transmission pattern resilience to climatic variability is mediated by insecticide-treated nets. Malar J. 2008 Jun 02; 7:100. View in: PubMed

  74. Parasites in food webs: the ultimate missing links. Ecol Lett. 2008 Jun; 11(6):533-46. View in: PubMed

  75. A general model for food web structure. Science. 2008 May 02; 320(5876):658-61. View in: PubMed

  76. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl Trop Dis. 2008 Feb 06; 2(1):e176. View in: PubMed

  77. Comparing models for early warning systems of neglected tropical diseases. PLoS Negl Trop Dis. 2007 Oct 22; 1(1):e33. View in: PubMed

  78. A stochastic model for ecological systems with strong nonlinear response to environmental drivers: application to two water-borne diseases. J R Soc Interface. 2008 Feb 06; 5(19):247-52. View in: PubMed

  79. Sources and sinks: revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trends Parasitol. 2007 Jul; 23(7):311-6. View in: PubMed

  80. Building epidemiological models from R0: an implicit treatment of transmission in networks. Proc Biol Sci. 2007 Feb 22; 274(1609):505-12. View in: PubMed

  81. Stochastic amplification in epidemics. J R Soc Interface. 2007 Jun 22; 4(14):575-82. View in: PubMed

  82. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science. 2006 Dec 22; 314(5807):1898-903. View in: PubMed

  83. Phenotypic plasticity opposes species invasions by altering fitness surface. PLoS Biol. 2006 Oct; 4(11):e372. View in: PubMed

  84. Serotype cycles in cholera dynamics. Proc Biol Sci. 2006 Nov 22; 273(1603):2879-86. View in: PubMed

  85. Computational ecology: from the complex to the simple and back. PLoS Comput Biol. 2005 Jul; 1(2):101-5. View in: PubMed

  86. Refractory periods and climate forcing in cholera dynamics. Nature. 2005 Aug 04; 436(7051):696-700. View in: PubMed

  87. Pathogen adaptation to seasonal forcing and climate change. Proc Biol Sci. 2005 May 07; 272(1566):971-7. View in: PubMed

  88. Competitive coexistence in a dynamic landscape. Theor Popul Biol. 2004 Dec; 66(4):341-53. View in: PubMed

  89. Ecology. Ecology for a crowded planet. Science. 2004 May 28; 304(5675):1251-2. View in: PubMed

  90. ENSO and cholera: a nonstationary link related to climate change? Proc Natl Acad Sci U S A. 2002 Oct 01; 99(20):12901-6. View in: PubMed

  91. Cluster size distributions: signatures of self-organization in spatial ecologies. Philos Trans R Soc Lond B Biol Sci. 2002 May 29; 357(1421):657-66. View in: PubMed

  92. Cholera and climate: revisiting the quantitative evidence. Microbes Infect. 2002 Feb; 4(2):237-45. View in: PubMed